Generalized (u, u+v)-Construction for OOAs
In [1, Theorem 4] the following generalization of the (u, u + v)-construction for OOAs is established, similar to the generalization of the (u, u + v)-construction for codes to generalized (u, u + v)-construction for codes.
Let C1,…, Cr be r ((si, T ), Ni, di)-NRT-codes, all over Fb, with b ≥ r and s1 ≤ ⋯ ≤ sr. Then an ((s, T ), N, d)-code over Fb with



can be constructed.
In the context of OOAs r linear OOAs A1,…, Ar with parameters OOA(bmi, si,Fb, T , ki) and s1 ≤ ⋯ ≤ sr can be used for constructing an OOA(bm1+…+mr, s1 + … + sr,Fb, T , k) with k = min{rk1 + (r – 1),(r – 1)k2 + (r – 2),…, 1kr +0}.
Special Cases
For r = 1 this construction yields C = C1.
For r = 2 it is the (u, u + v)-construction for OOAs.
See Also
Special case for orthogonal arrays / codes.
For T →∞ the corresponding result for nets is obtained.
References
[1] | Rudolf Schürer and Wolfgang Ch. Schmid. MinT - new features and new results. In Pierre LʹEcuyer and Art B. Owen, editors, Monte Carlo and Quasi-Monte Carlo Methods 2008, pages 171–189. Springer-Verlag, 2009. doi:10.1007/978-3-642-04107-5_10 |
Copyright
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Generalized (u, u+v)-Construction for OOAs.”
From MinT—the database of optimal net, code, OA, and OOA parameters.
Version: 2024-09-05.
http://mint.sbg.ac.at/desc_OGeneralizedUUPlusV.html