Generalized (u, u+v)-Construction for Nets
The following construction for nets is an immediate consequence of the generalized (u, u + v)-construction for OOAs, see [1, Corollary 3].
Let N1,…, Nr be r digital (ti, mi, si)-nets, all over Fb, with b ≥ r and s1 ≤ ⋯ ≤ sr. Then a digital (t, m, s)-net over Fb with



can be constructed.
Special Cases
For r = 1 this construction yields N = N1.
For r = 2 it is the (u, u + v)-construction for nets.
See Also
Generalization for arbitrary OOAs
Corresponding result for orthogonal arrays and codes
References
[1] | Rudolf Schürer and Wolfgang Ch. Schmid. MinT - new features and new results. In Pierre LʹEcuyer and Art B. Owen, editors, Monte Carlo and Quasi-Monte Carlo Methods 2008, pages 171–189. Springer-Verlag, 2009. doi:10.1007/978-3-642-04107-5_10 |
Copyright
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Generalized (u, u+v)-Construction for Nets.”
From MinT—the database of optimal net, code, OA, and OOA parameters.
Version: 2024-09-05.
http://mint.sbg.ac.at/desc_NGeneralizedUUPlusV.html