Preparata Codes
The Preparata code P(u) for an even u ≥ 4 is a binary, non-linear (2u, 22u−2u, 6)-code with strength 2u−1 – 2(u−2)/2 − 1 [1]. Therefore it can also be interpreted as an orthogonal array OA(22u−2u, 2u, ℤ2, 2u−1 – 2(u−2)/2 − 1). No linear code or linear orthogonal array with these parameters can exist [2].
In [3] it is shown that these codes can be constructed by applying the Gray-code mapping 0 00, 1 01, 2 11, and 3 10 to extended cyclic codes over ℤ4. When this mapping is applied to the dual of the code over ℤ4, Kerdock codes are obtained.
Special Cases
P(4) is the Nordstrom-Robinson code.
See Also
References
[1] | Franco P. Preparata. A class of optimum nonlinear double-error correcting codes. Information and Control, 13(4):378–400, October 1968. doi:10.1016/S0019-9958(68)90874-7 |
[2] | J.-M. Goethals and S. L. Snover. Nearly perfect binary codes. Discrete Mathematics, 3(1–3):65–88, 1972. doi:10.1016/0012-365X(72)90025-8 |
[3] | A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, Neil J. A. Sloane, and P. Solé. The ℤ4-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Transactions on Information Theory, 40(2):301–319, March 1994. doi:10.1109/18.312154 |
[4] | F. Jessie MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting Codes. North-Holland, Amsterdam, 1977. |
[5] | A. S. Hedayat, Neil J. A. Sloane, and John Stufken. Orthogonal Arrays. Springer Series in Statistics. Springer-Verlag, 1999. |
Copyright
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Preparata Codes.”
From MinT—the database of optimal net, code, OA, and OOA parameters.
Version: 2024-09-05.
http://mint.sbg.ac.at/desc_CPreparata.html