Nordstrom–Robinson OA
The Nordstrom-Robinson code [1] is a non-linear (16, 28, 6)-code over ℤ2. The strength of the Nordstrom-Robinson code is 5, therefore it is an orthogonal array OA(28, 16, ℤ2, 5). A linear code or linear orthogonal array with these parameters cannot exist.
A simple construction for the Nordstrom-Robinson code is given in [2]: Consider the ℤ4-linear, self-dual Octacode generated by the matrix
After mapping 0 00, 1 01, 2 11, and 3 10 the Nordstrom-Robinson code is obtained.
See Also
The Nordstrom-Robinson code is a special case of Kerdock codes as well as Preparata codes.
[3, Theorem 15.20]
References
[1] | Alan W. Nordstrom and John P. Robinson. An optimum nonlinear code. Information and Control, 11(5–6):613–616, 1967. doi:10.1016/S0019-9958(67)90835-2 |
[2] | G. D. Forney, Jr., Neil J. A. Sloane, and M. D. Trott. The Nordstrom-Robinson code is the binary image of the octacode. In A. R. Calderbank, G. D. Forney, Jr., and N. Moayeri, editors, Proceedings DIMACS/IEEE Workshop on Coding and Quantization, pages 19–26. American Mathematical Society, 1993. |
[3] | Jürgen Bierbrauer. Introduction to Coding Theory. Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton, London, New York, Washington D.C., 2004. MR2079734 (2005f:94001) |
Copyright
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Nordstrom–Robinson OA.”
From MinT—the database of optimal net, code, OA, and OOA parameters.
Version: 2024-09-05.
http://mint.sbg.ac.at/desc_CNordstromRobinson.html