Delsarte–Goethals Codes
The Delsarte-Goethals code DG(u, r) for even u ≥ 4 and 1 ≤ r ≤ u/2 is a binary, non-linear (2u, 2(u−1)(u/2-r+1)+u+1, 2m−1 – 2m−1−d)-code [1]. For r = u/2 − 1 it has strength 7 and is therefore an orthogonal array OA(23u−1, 2u, ℤ2, 7).
In [2] it is shown that these codes can be constructed by applying the Gray-code mapping 0→00, 1→01, 2→11, and 3→10 to linear, cyclic codes over ℤ4.
Special Cases
DG(u, 1) is the second-order Reed-Muller code RM(2, u).
DG(u, u/2) is the Kerdock code K(u). DG(4, 2) is therefore the Nordstrom-Robinson code.
Partition in Translates
DG(u, r) is the union of disjoint translates of DG(u, r + 1). In particular, DG(u, u/2 − 1) is the union of disjoint translates of Kerdock codes K(u) = DG(u, u/2), which are again the disjoint union of translates of first-order Reed-Muller codes RM(1, u). Construction X, Construction X4, and Construction XX can be applied to these codes.
See Also
References
[1] | Philippe Delsarte and Jean-Marie Goethals. Alternating bilinear forms over GFq. Journal of Combinatorial Theory, Series A, 19(1):26–50, July 1975. doi:10.1016/0097-3165(75)90090-4 |
[2] | A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, Neil J. A. Sloane, and P. Solé. The ℤ4-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Transactions on Information Theory, 40(2):301–319, March 1994. doi:10.1109/18.312154 |
[3] | F. Jessie MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting Codes. North-Holland, Amsterdam, 1977. |
[4] | A. S. Hedayat, Neil J. A. Sloane, and John Stufken. Orthogonal Arrays. Springer Series in Statistics. Springer-Verlag, 1999. |
Copyright
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Delsarte–Goethals Codes.”
From MinT—the database of optimal net, code, OA, and OOA parameters.
Version: 2024-09-05.
http://mint.sbg.ac.at/desc_CDelsarteGoethals.html