Sharpened Johnson Bound

In [1] a sharpened version of the Johnson bound is presented, which establishes the non-existence of linear [2u – 2, 2u − 2u−1, 5]-codes over 2 for u ≥ 4.

This result rules out linear codes with the parameters of Kerdock and Preparata codes.


[1]Andries E. Brouwer and L. M. G. M. Tolhuizen.
A sharpening of the Johnson bound for binary linear codes and the nonexistence of linear codes with Preparata parameters.
Designs, Codes and Cryptography, 3(2):95–98, May 1993.
doi:10.1007/BF01388407 MR1218941 (94d:94009)


Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Sharpened Johnson Bound.” From MinT—the database of optimal net, code, OA, and OOA parameters. Version: 2015-09-03.

Show usage of this method