Faure Sequence
The Faure sequences are a digital (0, s)-sequence over Fb with b denoting a prime (original case) or a prime power (general case) greater or equal to s. The case for b prime was proven by Faure [1], the general result is due to Niederreiter [2, Theorem 6.18].
The s infinite generator matrices C(1),…,C(s) over Fb are defined by C(i) = (cjr(i))j, r ≥ 0 with
where α1,…, αs denote s distinct elements from Fb and the conventions α0 = 1 for all α ∈ Fb and =0 for j > r are used.
For α = 1, the resulting matrix is the infinite Pascal matrix modulo the characteristic of Fb; for α = 0, it is the infinite identity matrix. If s = 1 and α1 = 0, the resulting (0, 1)-sequence is identical to the van der Corput sequence in the same base.
Sequences with the same parameters can also be obtained using Niederreiter sequences or Niederreiter-Xing sequences with rational function fields.
See Also
Construction 8 in [3].
References
[1] | Henri Faure. Discrépance de suites associées à un système de numération (en dimension s). Acta Arithmetica, 41:337–351, 1982. |
[2] | Harald Niederreiter. Point sets and sequences with small discrepancy. Monatshefte für Mathematik, 104(4):273–337, December 1987. doi:10.1007/BF01294651 MR918037 (89c:11120) |
[3] | Gary L. Mullen, Arijit Mahalanabis, and Harald Niederreiter. Tables of (t, m, s)-net and (t, s)-sequence parameters. In Harald Niederreiter and Peter Jau-Shyong Shiue, editors, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, volume 106 of Lecture Notes in Statistics, pages 58–86. Springer-Verlag, 1995. |
Copyright
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Faure Sequence.”
From MinT—the database of optimal net, code, OA, and OOA parameters.
Version: 2024-09-05.
http://mint.sbg.ac.at/desc_SFaure-ori.html