Base Reduction for Sequences
Every (digital) (t, s)-sequence in base bu with u ≥ 1 is also a (digital) (tʹ, s)-sequence in base b with
tʹ = ut + (u−1)s.
This result is due to [1, Proposition 4] and follows directly from the corresponding result for nets.
See Also
Construction 26 in [2].
References
[1] | Harald Niederreiter and Chaoping Xing. Low-discrepancy sequences and global function fields with many rational places. Finite Fields and Their Applications, 2(3):241–273, July 1996. doi:10.1006/ffta.1996.0016 MR1398076 (97h:11080) |
[2] | Andrew T. Clayman, Kenneth Mark Lawrence, Gary L. Mullen, Harald Niederreiter, and Neil J. A. Sloane. Updated tables of parameters of (t, m, s)-nets. Journal of Combinatorial Designs, 7(5):381–393, 1999. doi:10.1002/(SICI)1520-6610(1999)7:5<381::AID-JCD7>3.0.CO;2-S MR1702298 (2000d:05014) |
Copyright
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Base Reduction for Sequences.”
From MinT—the database of optimal net, code, OA, and OOA parameters.
Version: 2024-09-05.
http://mint.sbg.ac.at/desc_SBRed.html