Base Reduction for Sequences

Every (digital) (t, s)-sequence in base bu with u ≥ 1 is also a (digital) (tʹ, s)-sequence in base b with

tʹ = ut + (u−1)s.

This result is due to [1, Proposition 4] and follows directly from the corresponding result for nets.

See Also

References

[1]Harald Niederreiter and Chaoping Xing.
Low-discrepancy sequences and global function fields with many rational places.
Finite Fields and Their Applications, 2(3):241–273, July 1996.
doi:10.1006/ffta.1996.0016 MR1398076 (97h:11080)
[2]Andrew T. Clayman, Kenneth Mark Lawrence, Gary L. Mullen, Harald Niederreiter, and Neil J. A. Sloane.
Updated tables of parameters of (t, m, s)-nets.
Journal of Combinatorial Designs, 7(5):381–393, 1999.
doi:10.1002/(SICI)1520-6610(1999)7:5<381::AID-JCD7>3.0.CO;2-S MR1702298 (2000d:05014)

Copyright

Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Base Reduction for Sequences.” From MinT—the database of optimal net, code, OA, and OOA parameters. Version: 2024-09-05. http://mint.sbg.ac.at/desc_SBRed.html

Show usage of this method