OOA Folding

Given a (linear) ordered orthogonal array OOA(M, us, Sb, T , k) with u ≥ 1 a (linear) OOA(M, s, Sb, T ʹ, k) with T ʹ ≤ uT can be constructed.

If T ʹ = uT , the new OOA Aʹ is obtained from A by combining u blocks to a single block. Formally,

Aʹ = {(x1,1,…, x1,T ,  …,  xu,1,…, xu,T  |   ⋯  | xu(s−1)+1,1,…, xu(s−1)+1,T ,  …,  xus,1,…, xus,T )  :  x ∈ A}.

For T ʹ < uT , the final result is obtained using depth reduction.

If A is linear, a generator matrix of Aʹ can be obtained in a similar way.

See Also

Copyright

Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “OOA Folding.” From MinT—the database of optimal net, code, OA, and OOA parameters. Version: 2024-09-05. http://mint.sbg.ac.at/desc_OFolding.html

Show usage of this method