Niederreiter Sequence (Bratley–Fox–Niederreiter Implementation) with Equidistant Coordinate
Bratley, Fox and Niederreiter [1], [2] provide a FORTRAN implementation for the Niederreiter sequence [3], a class of digital (t, s)-sequences over Fb for arbitrary prime powers b. Nets with 1 ≤ s ≤ 55, 0 ≤ m < logb232, and b ≤ 9 are evaluated.
References
[1] | Paul Bratley, Bennett L. Fox, and Harald Niederreiter. Implementation and tests of low-discrepancy sequences. ACM Transactions on Modeling and Computer Simulation, 2(3):195–213, July 1992. doi:10.1145/146382.146385 |
[2] | Paul Bratley, Bennett L. Fox, and Harald Niederreiter. Algorithm 738: Programs to generate Niederreiter’s low-discrepancy sequences. ACM Transactions on Mathematical Software, 20(4):494–495, December 1994. doi:10.1145/198429.198436 |
[3] | Harald Niederreiter. Low-discrepancy and low-dispersion sequences. Journal of Number Theory, 30(1):51–70, September 1988. doi:10.1016/0022-314X(88)90025-X MR960233 (89k:11064) |
Copyright
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Niederreiter Sequence (Bratley–Fox–Niederreiter Implementation) with Equidistant Coordinate.”
From MinT—the database of optimal net, code, OA, and OOA parameters.
Version: 2024-09-05.
http://mint.sbg.ac.at/desc_NNiederreiterTOMS-equi.html