Niederreiter–Xing Sequence (Piršić Implementation) with Equidistant Coordinate
Piršić [1] provides a computer implementation for construction method III of the Niederreiter-Xing sequence [2]. This implementation uses only places of degree 1 from function fields with full constant field F2 given in [3] and listed here. Nets with 1 ≤ s ≤ 32 and 0 ≤ m ≤ 31 are evaluated.
References
[1] | Gottlieb Pirsic. A software implementation of Niederreiter-Xing sequences. In Kai-Tai Fang, Fred J. Hickernell, and Harald Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2000, pages 434–445. Springer-Verlag, 2002. |
[2] | Chaoping Xing and Harald Niederreiter. A construction of low-discrepancy sequences using global function fields. Acta Arithmetica, 73(1):87–102, 1995. MR1358190 (96g:11096) |
[3] | Harald Niederreiter and Chaoping Xing. Explicit global function fields over the binary field with many rational places. Acta Arithmetica, 75(4):383–396, 1996. MR1387872 (97d:11177) |
Copyright
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Niederreiter–Xing Sequence (PirÅ¡ić Implementation) with Equidistant Coordinate.”
From MinT—the database of optimal net, code, OA, and OOA parameters.
Version: 2024-09-05.
http://mint.sbg.ac.at/desc_NNXPirsic-equi.html