m-Reduction
Every (digital) (t, m, s)-net with m > t yields a (digital) (t, m−1, s)-net in the same base.
This propagation rule is due to [1, Lemma 2.8] for general nets and to [2, Lemma 3] for digital nets.
Construction
The new net Nʹ is obtained from N by selecting all points in [0, 1/b)×[0, 1)s−1 ∈ N and scaling them back to [0, 1]s using an arbitrary affine transformation.
See Also
References
[1] | Harald Niederreiter. Point sets and sequences with small discrepancy. Monatshefte für Mathematik, 104(4):273–337, December 1987. doi:10.1007/BF01294651 MR918037 (89c:11120) |
[2] | Wolfgang Ch. Schmid and Reinhard Wolf. Bounds for digital nets and sequences. Acta Arithmetica, 78(4):377–399, 1997. |
[3] | Gary L. Mullen, Arijit Mahalanabis, and Harald Niederreiter. Tables of (t, m, s)-net and (t, s)-sequence parameters. In Harald Niederreiter and Peter Jau-Shyong Shiue, editors, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, volume 106 of Lecture Notes in Statistics, pages 58–86. Springer-Verlag, 1995. |
[4] | Harald Niederreiter. Constructions of (t, m, s)-nets and (t, s)-sequences. Finite Fields and Their Applications, 11(3):578–600, August 2005. doi:10.1016/j.ffa.2005.01.001 MR2158777 (2006c:11090) |
Copyright
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “m-Reduction.”
From MinT—the database of optimal net, code, OA, and OOA parameters.
Version: 2024-09-05.
http://mint.sbg.ac.at/desc_NMRed.html