Cyclic, Quasi-Cyclic, and Quasi-Twisted Codes by Daskalov, Hristov, and Metodieva
In a series of papers Daskalov, Hristov, and Metodieva list the generating polynomials and resulting weight distributions of cyclic, quasi-cyclic, and quasi-twisted linear codes over various finite fields. Information about codes over F2, F3, F5, F7, F8, and F9 can be found in [1], [2], [3], [4], [5], and [6], respectively.
References
[1] | Rumen N. Daskalov and Plamen Hristov. New binary one-generator quasi-cyclic codes. IEEE Transactions on Information Theory, 49(11):3001–3005, November 2003. doi:10.1109/TIT.2003.819337 |
[2] | Rumen N. Daskalov and Plamen Hristov. New quasi-twisted degenerate ternary linear codes. IEEE Transactions on Information Theory, 49(9):2259–2263, September 2003. doi:10.1109/TIT.2003.815798 |
[3] | Rumen N. Daskalov, Plamen Hristov, and Elena Metodieva. New minimum distance bounds for linear codes over GF(5). Discrete Mathematics, 275(1–3):97–110, January 2004. doi:10.1016/S0012-365X(03)00126-2 |
[4] | Rumen N. Daskalov and Plamen Hristov. New one-generator quasi-cyclic codes over GF(7). Problems of Information Transmission, 38(1):50–54, January 2002. doi:10.1023/A:1020094206873 |
[5] | Rumen N. Daskalov and Plamen Hristov. New quasi-cyclic degenerate linear codes over GF(8). Problems of Information Transmission, 39(2):184–190, April 2003. doi:10.1023/A:1025100305167 |
[6] | Rumen N. Daskalov, Elena Metodieva, and Plamen Hristov. New minimum distance bounds for linear codes over GF(9). Problems of Information Transmission, 40(1):13–24, January 2004. doi:10.1023/B:PRIT.0000024876.30498.f4 |
Copyright
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Cyclic, Quasi-Cyclic, and Quasi-Twisted Codes by Daskalov, Hristov, and Metodieva.”
From MinT—the database of optimal net, code, OA, and OOA parameters.
Version: 2024-09-05.
http://mint.sbg.ac.at/desc_CDaskalovHristovMetodieva.html