Quasi-Cyclic and Quasi-Twisted Codes by Daskalov and Gulliver

In a series of articles Daskalov and Gulliver list the generating polynomials and resulting weight distributions of quasi-cyclic linear codes.

The initial article [1] establishes the existence of quasi-cyclic codes over ℤ3 and F4. Additional codes over ℤ3 can be found in [2], additional codes over F4 in [3] (the generating polynomials are not contained in the final paper, but can be found in extended versions on the homepage of the second author). Codes over ℤ5 can be found in [4]. Finally, additional codes over ℤ3, ℤ5, ℤ7, and F8 are given in [5].

References

[1]Rumen N. Daskalov and T. Aaron Gulliver.
New minimum distance bounds for linear codes over small fields.
IEEE Transactions on Information Theory, 43(5):1647–1650, September 1997.
doi:10.1109/18.623167
[2]Rumen N. Daskalov, T. Aaron Gulliver, and Elena Metodieva.
New ternary linear codes.
IEEE Transactions on Information Theory, 45(5):1687–1688, July 1999.
doi:10.1109/18.771246
[3]Rumen N. Daskalov and T. Aaron Gulliver.
New quasi-twisted quaternary linear codes.
IEEE Transactions on Information Theory, 46(7):2642–2643, November 2000.
doi:10.1109/18.887874
[4]Rumen N. Daskalov and T. Aaron Gulliver.
Bounds on minimum distance for linear codes over GF(5).
Applicable Algebra in Engineering, Communication and Computing, 9(6):547–558, July 1999.
doi:10.1007/s002000050117
[5]Rumen N. Daskalov and T. Aaron Gulliver.
New minimum distance bounds for linear codes over small fields.
Problems of Information Transmission, 37(3):206–215, July 2001.
doi:10.1023/A:1013873906597

Copyright

Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Quasi-Cyclic and Quasi-Twisted Codes by Daskalov and Gulliver.” From MinT—the database of optimal net, code, OA, and OOA parameters. Version: 2024-09-05. http://mint.sbg.ac.at/desc_CDaskalovGulliver.html

Show usage of this method