Quasi-Cyclic and Quasi-Twisted Codes by Daskalov and Gulliver

In a series of articles Daskalov and Gulliver list the generating polynomials and resulting weight distributions of quasi-cyclic linear codes.

The initial article [1] establishes the existence of quasi-cyclic codes over 3 and F4. Additional codes over 3 can be found in [2], additional codes over F4 in [3] (the generating polynomials are not contained in the final paper, but can be found in extended versions on the homepage of the second author). Codes over 5 can be found in [4]. Finally, additional codes over 3, 5, 7, and F8 are given in [5].

References

[1]Rumen N. Daskalov and T. Aaron Gulliver.
New minimum distance bounds for linear codes over small fields.
IEEE Transactions on Information Theory, 43(5):1647–1650, September 1997.
doi:10.1109/18.623167
[2]Rumen N. Daskalov, T. Aaron Gulliver, and Elena Metodieva.
New ternary linear codes.
IEEE Transactions on Information Theory, 45(5):1687–1688, July 1999.
doi:10.1109/18.771246
[3]Rumen N. Daskalov and T. Aaron Gulliver.
New quasi-twisted quaternary linear codes.
IEEE Transactions on Information Theory, 46(7):2642–2643, November 2000.
doi:10.1109/18.887874
[4]Rumen N. Daskalov and T. Aaron Gulliver.
Bounds on minimum distance for linear codes over GF(5).
Applicable Algebra in Engineering, Communication and Computing, 9(6):547–558, July 1999.
doi:10.1007/s002000050117
[5]Rumen N. Daskalov and T. Aaron Gulliver.
New minimum distance bounds for linear codes over small fields.
Problems of Information Transmission, 37(3):206–215, July 2001.
doi:10.1023/A:1013873906597

Copyright

Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Quasi-Cyclic and Quasi-Twisted Codes by Daskalov and Gulliver.” From MinT—the database of optimal net, code, OA, and OOA parameters. Version: 2008-04-04. http://mint.sbg.ac.at/desc_CDaskalovGulliver.html

Show usage of this method