Large Caps in PG(5, b)

In [1, Theorem 14] it is shown that a ((b + 1)(b2 + 3))-cap in the projective space PG(5, b) can be constructed. If b is even, a construction for a ((b + 2)(b2 + 1))-cap in PG(5, b) can be found in [2].

See also [3, Table 4.6(i)].

References

[1]Yves Edel and Jürgen Bierbrauer.
Recursive constructions for large caps.
Bulletin of the Belgian Mathematical Society. Simon Stevin, 6(2):249–258, 1999.
[2]A. C. Mukhopadhyay.
Lower bounds on mt(r, s).
Journal of Combinatorial Theory, Series A, 25(1):1–13, July 1978.
doi:10.1016/0097-3165(78)90026-2
[3]James W. P. Hirschfeld and Leo Storme.
The packing problem in statistics, coding theory and finite projective spaces: Update 2001.
In Finite Geometries, volume 3 of Developments in Mathematics, pages 201–246. Kluwer Academic Publishers, 2001.

Copyright

Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Large Caps in PG(5, b).” From MinT—the database of optimal net, code, OA, and OOA parameters. Version: 2008-04-04. http://mint.sbg.ac.at/desc_CCapsM6.html

Show usage of this method