Improvement by Maruta on the Griesmer Bound
In a series of papers Maruta determines cases in which the Griesmer bound can be improved by one, i.e., parameters b, n, and d where a linear [s, n, d]-code over Fb can only exist if




In [1] this is shown for n = 4, d = b3 – b2 – b – ⌈⌉ − 1, and all b ≥ 4. In [2] for n = 5, d = b4 – b3 – b – ⌈
⌉ − 1, and all b ≥ 4. In [3] for d = (n – 2)bn−1 – (n – 1)bn−2 for n and b with either n = 3, 4, 5 and b ≥ n or n ≥ 6 and b ≥ 2n−3.
References
[1] | Tatsuya Maruta. On the non-existence of linear codes attaining the Griesmer bound. Geometriae Dedicata, 60(1):1–7, March 1996. doi:10.1007/BF00150863 |
[2] | Tatsuya Maruta. On the minimum length of q-ary linear codes of dimension five. Geometriae Dedicata, 65(3):299–304, March 1997. doi:10.1023/A:1004901203236 |
[3] | Tatsuya Maruta. On the achievement of the Griesmer bound. Designs, Codes and Cryptography, 12(1):83–87, September 1997. doi:10.1023/A:1008250010928 |
Copyright
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Improvement by Maruta on the Griesmer Bound.”
From MinT—the database of optimal net, code, OA, and OOA parameters.
Version: 2024-09-05.
http://mint.sbg.ac.at/desc_CBoundMaruta.html