Bound for Caps in PG(4, b)
Let m2(u, b) denote the size of the largest caps in the projective space PG(u, b). Then, for all b ≥ 7, we have
m2(4, b) ≤ b3 – b2 +
The result for odd b is due to [1], the result for even b to [2] and [3]. See also [4, Table 4.3(i)].
References
[1] | Adriano Barlotti. Some topics in finite geometrical structures. Mimeo Series 439, Institute of Statistics, Univ. of North Carolina, 1965. |
[2] | Jin-Ming Chao. On the size of a cap in PG(n, q) with q even and n ≥ 3. Geometriae Dedicata, 74(1):91–94, January 1999. doi:10.1023/A:1005095418152 |
[3] | James W. P. Hirschfeld and Joseph A. Thas. Linear independence in finite spaces. Geometriae Dedicata, 23(1):15–31, May 1987. doi:10.1007/BF00147388 |
[4] | James W. P. Hirschfeld and Leo Storme. The packing problem in statistics, coding theory and finite projective spaces: Update 2001. In Finite Geometries, volume 3 of Developments in Mathematics, pages 201–246. Kluwer Academic Publishers, 2001. |
Copyright
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Bound for Caps in PG(4, b).”
From MinT—the database of optimal net, code, OA, and OOA parameters.
Version: 2024-09-05.
http://mint.sbg.ac.at/desc_CBoundCapM5.html