A Result by Gronchi and Heim
Let m2(u, b) denote the size of the largest caps in the projective space PG(u, b). In [1, Table 4.3(i)], the following upper bounds on m2(4, b) are listed:
m2(4, 9) ≤ 703, therefore s ≤ 703 for all linear orthogonal arrays OA(95, s,F9, 3) / [s, s−5, 4]-codes over F9
m2(4, 11) ≤ 1266, therefore s ≤ 1266 for all linear OA(115, s, ℤ11, 3) / [s, s−5, 4]-codes over ℤ11
m2(4, 13) ≤ 2107, therefore s ≤ 2107 for all linear OA(135, s, ℤ13, 3) / [s, s−5, 4]-codes over ℤ13
These bounds are obtained by applying the ideas of Gronchi [2] to the results of Heim [3].
References
[1] | James W. P. Hirschfeld and Leo Storme. The packing problem in statistics, coding theory and finite projective spaces: Update 2001. In Finite Geometries, volume 3 of Developments in Mathematics, pages 201–246. Kluwer Academic Publishers, 2001. |
[2] | Paolo Gronchi. I blocking sets ed il packing problem. Unione Matematica Italiana. Bollettino. A. Serie VII, 7(2):227–236, 1993. |
[3] | U. Heim. On t-blocking sets in projective spaces, 1994. Unpublished manuscript. |
Copyright
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “A Result by Gronchi and Heim.”
From MinT—the database of optimal net, code, OA, and OOA parameters.
Version: 2024-09-05.
http://mint.sbg.ac.at/desc_CBoundB91113M5Cap.html