Quasi-Cyclic and Quasi-Twisted Codes by Boukliev
In [1, Theorem 1(ii)] Boukliev constructs a quasi-twisted [228, 6, 150]-code over ℤ3.
In [2, Theorem 3] he constructs quasi-cyclic codes with rate 1/p and parameters [135, 5, 98] and [225, 5, 166] over F4. In [2, Theorem 4] quasi-cyclic codes with rate (sʹ−1)/psʹ and parameters [222, 5, 164] and [234, 5, 173] over F4.
References
[1] | Iliya G. Boukliev. Some new optimal ternary linear codes. Designs, Codes and Cryptography, 12(1):5–11, September 1997. doi:10.1023/A:1008215724132 MR1462518 (98f:94023) |
[2] | Iliya G. Boukliev. New bounds for the minimum length of quaternary linear codes of dimension five. Discrete Mathematics, 169(1–3):185–192, May 1997. doi:10.1016/S0012-365X(96)00104-5 MR1449716 |
Copyright
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Quasi-Cyclic and Quasi-Twisted Codes by Boukliev.”
From MinT—the database of optimal net, code, OA, and OOA parameters.
Version: 2024-09-05.
http://mint.sbg.ac.at/desc_CBoukliev.html