Quasi-Cyclic and Quasi-Twisted Codes by Boukliev

In [1, Theorem 1(ii)] Boukliev constructs a quasi-twisted [228, 6, 150]-code over 3.

In [2, Theorem 3] he constructs quasi-cyclic codes with rate 1/p and parameters [135, 5, 98] and [225, 5, 166] over F4. In [2, Theorem 4] quasi-cyclic codes with rate (sʹ−1)/psʹ and parameters [222, 5, 164] and [234, 5, 173] over F4.

References

[1]Iliya G. Boukliev.
Some new optimal ternary linear codes.
Designs, Codes and Cryptography, 12(1):5–11, September 1997.
doi:10.1023/A:1008215724132 MR1462518 (98f:94023)
[2]Iliya G. Boukliev.
New bounds for the minimum length of quaternary linear codes of dimension five.
Discrete Mathematics, 169(1–3):185–192, May 1997.
doi:10.1016/S0012-365X(96)00104-5 MR1449716

Copyright

Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Quasi-Cyclic and Quasi-Twisted Codes by Boukliev.” From MinT—the database of optimal net, code, OA, and OOA parameters. Version: 2008-04-04. http://mint.sbg.ac.at/desc_CBoukliev.html

Show usage of this method