Quasi-Cyclic Codes by Bierbrauer and Gulliver
In [1] a non-exhaustive heuristic combinatorial search is used for finding quasi-cyclic codes of dimension n ∈ {3, 4, 5} over F9. The generating polynomials of the following codes can be found in [1, Table 1] and in the two examples on the following page:
| s | n | d |
| 36 | 3 | 31 |
| 48 | 3 | 42 |
| 55 | 3 | 48 |
| 24 | 4 | 19 |
| 32 | 4 | 26 |
| 40 | 4 | 33 |
| 45 | 4 | 37 |
| 55 | 4 | 46 |
| 105 | 4 | 90 |
| 119 | 4 | 102 |
| 126 | 4 | 108 |
| 130 | 4 | 111 |
| 32 | 5 | 24 |
| 40 | 5 | 31 |
| 48 | 5 | 38 |
| 55 | 5 | 44 |
| 66 | 5 | 53 |
| 77 | 5 | 63 |
| 80 | 5 | 65 |
| 88 | 5 | 72 |
| 99 | 5 | 82 |
| 110 | 5 | 91 |
| 121 | 5 | 101 |
| 132 | 5 | 110 |
References
| [1] | Jürgen Bierbrauer and T. Aaron Gulliver. New linear codes over F9. The Australasian Journal of Combinatorics, 21:131–140, 2000. MR1758264 (2000m:94032) |
Copyright
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Quasi-Cyclic Codes by Bierbrauer and Gulliver.”
From MinT—the database of optimal net, code, OA, and OOA parameters.
Version: 2024-09-05.
http://mint.sbg.ac.at/desc_CBierbrauerGulliverQuasiCyclic.html