Quaternary Constacyclic Codes with Minimum Distance 5
In [1] and [2] two classes of constacyclic codes with minimum distance 5 over F4 are given. The first class yields
[(2m +1)/3,(2m +1)/3 – m, 5] - codes
for odd m ≥ 5, the second class yields
[(2m – 1)/3,(2m – 1)/3 – m, 5] - codes
for even m ≥ 6.
See also
[3, Theorem 13.29 and 13.30].
References
[1] | D. N. Gevorkyan, A. M. Avetisyan, and V. A. Tigranyan. On the construction of codes correcting two errors in Hamming metric over Galois fields. Vychislitelʹnaya Tekhnika, Kuibyshev, 3:19–21, 1975. (in Russian). |
[2] | I. I. Dumer and V. A. Zinovʹev. Some new maximal codes over GF(4). Problemy Peredachi Informatsii, 14(3):24–34, 1978. Translation in Problems of Information Transmission 1979, 174–181. |
[3] | Jürgen Bierbrauer. Introduction to Coding Theory. Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton, London, New York, Washington D.C., 2004. MR2079734 (2005f:94001) |
Copyright
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Quaternary Constacyclic Codes with Minimum Distance 5.”
From MinT—the database of optimal net, code, OA, and OOA parameters.
Version: 2024-09-05.
http://mint.sbg.ac.at/desc_CB4K4.html