Quaternary Constacyclic Codes with Minimum Distance 5

In [1] and [2] two classes of constacyclic codes with minimum distance 5 over F4 are given. The first class yields

[(2m +1)/3,(2m +1)/3 – m, 5] - codes

for odd m ≥ 5, the second class yields

[(2m – 1)/3,(2m – 1)/3 – m, 5] - codes

for even m ≥ 6.

See also


[1]D. N. Gevorkyan, A. M. Avetisyan, and V. A. Tigranyan.
On the construction of codes correcting two errors in Hamming metric over Galois fields.
Vychislitelʹnaya Tekhnika, Kuibyshev, 3:19–21, 1975.
(in Russian).
[2]I. I. Dumer and V. A. Zinovʹev.
Some new maximal codes over GF(4).
Problemy Peredachi Informatsii, 14(3):24–34, 1978.
Translation in Problems of Information Transmission 1979, 174–181.
[3]Jürgen Bierbrauer.
Introduction to Coding Theory.
Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton, London, New York, Washington D.C., 2004.
MR2079734 (2005f:94001)


Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Quaternary Constacyclic Codes with Minimum Distance 5.” From MinT—the database of optimal net, code, OA, and OOA parameters. Version: 2015-09-03. http://mint.sbg.ac.at/desc_CB4K4.html

Show usage of this method