Ternary Negacyclic Codes with Minimum Distance 5
In [1] a class of negacyclic codes with minimum distance 5 over ℤ3 is given. It yields [s, s−2r, 5]-codes with s = (3r + 1)/2 for all r ≥ 2.
References
[1] | Igor B. Gashkov and V. M. Sidelʹnikov. Linear ternary quasiperfect codes that correct double errors. Problems of Information Transmission, 22(4):284–288, 1986. |
Copyright
Copyright © 2004, 2005, 2006, 2007, 2008, 2009, 2010 by Rudolf Schürer and Wolfgang Ch. Schmid.
Cite this as: Rudolf Schürer and Wolfgang Ch. Schmid. “Ternary Negacyclic Codes with Minimum Distance 5.”
From MinT—the database of optimal net, code, OA, and OOA parameters.
Version: 2024-09-05.
http://mint.sbg.ac.at/desc_CB3K4.html